
SCALING UP A SCIENTIFIC COMPUTATION 

 

Summary 
 

Our Customer was implementing a new software-based medical device, processing patient data 

and performing unusually detailed predictive modeling to improve the treatment of patients with 

a targeted disease and chose to use Haskell as the programming language for it. The whole core 

technology was seen as a single pure mathematical function -- patient data in, predictive analysis 

out. While the Customer used the power of Haskell to get the software working -- they had a safe 

and effective prototype device -- but the vast amount of computation involved meant that it would 

need multiple CPU cores to run quickly. In theory, the use of Haskell should have meant they 

could just “turn on” native multicore support for more throughput, solving the problem 

automatically. 

Unfortunately, despite their use of Haskell’s native parallel/multicore programming features, the 

performance was not improving as expected as more CPUs were added. Performance stopped 

improving significantly past 4 cores, and in fact stopped improving at all approaching 10 cores. 

Further investigation actually showed slower performance above 12 cores. 

FP Complete was tasked with investigating why the software was not scaling on a single machine 

as they had hoped, and if possible, allow scaling to much larger (18 core) machines and even 

beyond a single machine to a cloud-based “compute cluster” of big servers. 

The problem became clear after a short period of intense research by FP Complete- as a memory-

managed language, Haskell relies critically on garbage collection -- the recycling of unused 

memory space. Knowing the importance of fast garbage collection to good performance, and 

knowing that our Customer’s application used and released large amounts of memory, we 

suspected the problem might be here. 

We investigated further and found inefficient behavior of the Haskell garbage collector when 

managing a single heap accessed by many concurrent threads. To establish the source of the 

problem we took advantage of the instrumentation in the Glasgow Haskell Compiler runtime. 

Specifically, we were able to precisely measure how much time was spent garbage collecting, and 

how parallelized the garbage collector itself was. We discovered that as we added CPUs garbage 

collection took a higher and higher percentage of the total time -- up to 60% of the times in some 

cases, compared to less than 10% with one CPU. Using a tool called ThreadScope, it became clear 

that as the number of CPUs grew, the garbage collection pauses would become more and more 

frequent (since memory would be allocated faster, given the parallel work). The pauses would also 

be longer, given that they had to traverse a larger heap. This, coupled with each garbage collection 

pause blocking all the threads each time, caused the slowdown our Customer was experiencing. 

Usually these problems are solvable using data structures that exert less pressure on the garbage 

collector. However, this kind of restructuring would have required broad changes to how the core 

algorithm of the device are structured, incurring significant costs and delays, and possibly 



complicating the regulatory filing. We needed to find a solution to the scalability problem without 

modifying the Customer’s core code. 

 

Name:  Fortune 500 company in pharmaceutical space 

Industry/Sector:  Software Based Medical Device 

Project Type: High Performance Computing, Big Compute 

Technology Used: AWS Cloud, Redis, functional programming 

Project Requirements:  Isolate the problem and develop a solution that left the Customers’ 

proven core code intact. 

 

The Solution 
 

FP Complete quickly confirmed that the problem stemmed from Haskell’s practice of recycling 

unused memory and worked around this problem by developing a platform capable of easily 

distributing Haskell computation across distinct processes. 

Since the inefficiencies we were experiencing were due to Haskell’s garbage collector having 

trouble managing a very big heap accessed by multiple threads, one way to mitigate the problem 

is to split up the work in many small heaps serving different threads or processes. Thus, garbage 

collection in one memory heap would not block users of the other heaps. We decided to distribute 

the workload across several separate single-threaded processes, each with its own heap, so that 

each would be very productive while still being able to distribute work across vast computing 

resources. 

To distribute work efficiently, we developed a design using a master-slave architecture with the 

master orchestrating work to slaves. The slaves communicate with the master via messages over 

TCP sockets, and thus can be on the same machine or on separate machines -- a “two for one” win 

since the same code could support multi-core as well as multi-machine scaling. We distributed 

large chunks of work per message, to ensure that the latency in message-passing would not 

significantly affect performance. 

The Customer’s predictive model uses a statistical approach called time-series Monte Carlo, which 

explores thousands of possible evolutions over time. Thus, as a first attempt the master would 

orchestrate the work as follows: The master node is initialized with the initial states. When the 

master node needs to evolve a state, it transfers it to a slave node, which can be another process on 

the same machine, or on another machine across a network connection. The slave node executes 

the compute-intensive “evolution” function, and then returns the new state to the master. The 

master inspects the new states as they come from the slaves and continues evolving them. The 

problem with this first approach is that the states are relatively big -- in the hundreds of kilobytes 

per state, for a total of several gigabytes of states alive at any given time. This makes transferring 

them to a slave each time impractical. 



We developed an algorithm capable of persisting the states on slave nodes, and then evolving them 

directly on the slaves without having to transfer them each time. Moreover, the master also take 

care to dynamically rebalance the work when a slave ends up having a backlog of states to evolve 

while others are idling. This keeps the communication traffic to a minimum while achieving good 

work balance across slave nodes. Crucially, all this management was handled outside the core 

regulated code, the mathematical analysis. 

This allowed us not only to improve performance by 100% on a single 18-core machine, but also 

to distribute the computation across multiple machines, achieving latency reductions of up to 600% 

compared to the best performance we could get with the single-process version. 

We choose this approach since it allowed us to achieve a dramatic speedup without any change to 

the core algorithm, and maintaining the output of the device byte-identical to the original version 

at all times, thus avoiding the burden of verifying the output twice, given the highly regulated 

environment the device operates in. 

 

New Challenges for FP Complete 

A remaining bottleneck was converting Haskell objects to streams of bytes that could be 

transferred as a message. This led to optimization work that culminated in the development of a 

new serialization library called “store” which improves the Haskell status quo by several orders of 

magnitude. With the Customer’s permission we released this library under a permissive open 

source license, following a string of FP Complete releases aiming to improve the Haskell 

ecosystem while protecting Customer confidentiality. This helps to reduce future maintenance 

work for the Customer, by bringing the open-source community to bear on maintaining the generic 

function over time. 

Conclusion 

We dramatically improved the program’s speed and scalability by building a framework to 

distribute the workload efficiently across multiple processes on multiple CPU cores, and then 

across multiple machines. We included the “middleware” infrastructure supporting these 

improvements as part of FP Complete's High Performance Computing framework, allowing for 

easy deployment of the scaled-up device on Amazon’s AWS cloud computing platform. 

At the end of this optimization effort we doubled the performance of the device on the 18-core 

machines that we were using, and enabled us to gain a latency reduction of up to 500% by 

distributing the work across several machines. 

As the resulting measurement showed, the distributed version of the software is already twice as 

fast on a single 18-core machine, and is then capable of scaling beyond one machine for even faster 

simulations. For example, the plot shows the time the simulation takes for 2 machines (36 cores) 

and 4 machines (72 cores), where the simulation time is slightly more than 3 minutes, while the 

best time we could get using the local version of the software is around 20 minutes. This is not 

only advantageous for the product, but also a boon to development: programmers testing changes 

or data scientists tuning parameters can iterate 6 times faster. 



Moreover, we integrated this platform to distribute work into a broader high-performance 

computing (HPC) framework that allows the Customer to easily and reliably schedule requests and 

wait for responses. This framework allows multiple Customers, even across a remote Web API, to 

schedule work that is automatically and flexibly distributed across a cluster. The cluster can expand 

and shrink with no downtime, creating and deleting cloud compute machines to quickly react to 

changing demands. This HPC framework is architected to be extremely easily to deploy and scale, 

taking advantage of the AWS computing platform (both in the form of the EC2 and ElastiCache) 

and Docker containers to maximize reliability and minimize maintenance costs. 

Having a direct handle on how the work is distributed let us integrate the strategy to distribute 

work into the Customer’s broader strategy to deploy the medical device reliably and scalably. This 

means that we’re able to use the hardware we are paying for as efficiently as possible, and we’re 

able to scale seamlessly as the load increases. 
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